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ABSTRACT

This paper addresses the problem of estimating an optimal
acceptance probability to be used for significance testing as
applied to partially supervised classification where the class
defnition and corresponding training samples are provided a
priori only for one specific class of interest. Considering the
effort in both time and man-power required for a well-defined,
exhaustive list of classes with their representative training
samples even if there is just one class of interest to identify, the

"partially" supervised capability would be very desirable,
assuming adequate classifier performance can be obtained. The
optimal acceptance probability is estimated directiy from the data
set. Experiments with both simulated and real data show very
satisfactory results.
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I. INTRODUCTION

In practical applications of pattern classification techniques,
it is not unusual to confront "partially" supervised problems
[1,2] where one is to identify only a particular class of objects
among others with only statistical information pertaining to those
objects of interest. It can arise in such eases where defining all
the classes and collecting their statistical information is

impossible or very expensive in terms of time and manpower.
Design of a conventional supervised classifier requires training
samples for all the classes in the given data in order to insure
optimal performance. Considering the effort in both time and
man-power required to have a well-defined, exhaustive list of
classes with a corresponding representative set of training

samples, the partially supervised capability would be very
desirable, assuming adequate classifier performance can be
obtained. We addresses the partially supervised elassifcation

problem especially when the class definition and its statistical
characterization are provided a priori for only just one particular
class.

Significance test is useful in such problems as thresholding,
or the single hypothesis testing [3,4] which is very similar to
partially supervised classification. One important element in
significance testing is the acceptance probability (or significance
level), which is usually set by the data analyst in such a way that
the type I (i.e., omission) error rate is kept within a pre-specified
level. The commission error, or type II error cannot be easily
evaluated unless the relative distributions of all classes in the

data set are available. Note, however, that a mixture density

estimate can give an estimate of the probability density of
"others" class. This paper presents an algorithm which can
automatically estimate the optimal acceptance probability from
the given data set, without the user's supervision, under selected
optimality conditions such as the class-averaged classification
error, or the generalized total classification error, to be used with
significance testing for the partially supervised classification.
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II. SIGNIFICANCE TESTING

Suppose there is a data set, X -- {x t, --, xN} with N

samples, xi's are q-dimensional feature vectors. One is only
interested in identifying a single etass, denoted by Cint, i.e.,

discriminating between it and the "others" class, denoted by

Coth=.s. Let fx(xlCin)) be the probability density function (PDF)
of the class of interest. It is assumed either to know the PDF of

the class of interest, or, to have a representative training samples
from which a density estimate can be made. The prior
probabilities of the class of interest and others are indicated by

_int and _oth=r=- Even though the following derivations do not
require any specific family of PDF for the class of interest,
multivariate normality will be assumed for simplicity's sake. It is
straightforward to generalize to other PDFs. Furthermore,
without loss of generality, the class of interest is assumed to
have zero mean, and an identity covariance matrix.

With fx(xlCin0 being the standard multivariate Gaussian, a

natural choice for the test statistic would be T(x) = xTx. The

availability of the statistical characterization of the class of

interest enables control of the omission error, denoted by el(o_).

The value, (1-¢) defines the maximum allowable omission error

and is often called the significance level The parameter ct will be
called the acceptance probability. The commission error, denoted

by e2(e¢), is generally difficult to control since its evaluation

requires unavailable stadstieal knowledge about all alternatives.
To avoid potentially excessive omission or commission errors,
the acceptance probability must be carefully determined by
checking the relative distribution of data samples with respect to
the class of interest. An automatic estimation capability of

optimum acceptance probability is thus very desirable.
In significance testing which can be viewed as a problem of

single hypothesis testing, the optimal acceptance probability can
be obtained in a similar way to the simple binary hypothesis
counterpart [5] for which an optimal Bayes minimum expected
cost test is well known as the likelihood ratio test whose design

requires functions of omission and commission errors. The
expression for commission error in significance testing, is
ordinarily not readily available a priori. Nevertheless, estimating
the commission error function for a given data set is possible, as
will be discussed in following section from the mixture density
estimate. With the estimated commission error function, the

same idea of simple binary hypothesis testing mentioned above
can be applied also to significance testing in estimating the
opthnal acceptance probability.

IIL OPTIMAL SIGNIFICANCE TESTING

Suppose there are N 1 samples belonging to Cin t in the set X.

N] is generally unknown. N(ct), the expected number of

samples in X accepted with the acceptance probability a, is,

N(o_) - N f%a fy(s) ds, 0 _ (%_ l
dO
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where fy(y) is the mixture PDF of y, y = xTx, and L a is the

threshold corresponding to acceptance probability ot. In the most

simplistic way, N(a) can be obtained by counting the nun_ber of

samples accepted while varying a. Even though it is quite
simple and fast enough, it may have some drawbacks coming
from the counting nature. To avoid the drawbacks, a kernel-

based Parzen density estimate [6] of fv(y) can be obtained first

to compute N(ot). Note that y's are all non-negative and the
domain of the density estimation is [0,+**). In this case, the use
of a symmetric kernel function such as the Gaussian kernel
would result in underestimation near zero since there are no
samples with negative values. This underestimation can be

avoided by using positive reflection [7] in which a new density
estimate is obtained with an augmented set of y's.

Nl(ot), defined as the expected numbers of data points of

Cint accepted with or, is given as Nl(ot) = otN 1 and the omission

error rate is e1(ot) = I- or. The commission error rate is given as,

N(ot) - otN 1
e2(ot) - N - N I

Note that el(or) is stricdy decreasing with slope -1. ca(or ) is a
monotonically increasing function with increasing rate dependent

on N(ot). Evaluating e2(ot) generally requires knowledge of N 1.

The optimal test can be designed by minimizing the a
posterior expected cost given as [5],

E(ot) = A/_int el(or) + Zother$ e2(ot) (1)

No cost is assumed for a correct decision and the constant A,
A > 0, is the cost on making omission error relative to the cost
of making commission error being I. The optimal acceptance
probability is dependent on the optimality criterion. Note that
different error criteria can be represented with eq. (1) by
substituting different A values. The class-averaged classification
error criterion which is a simple average of omission and

commission errors can be represented equivalently by eq. (1)

with A =/Uothers/_int. The Bayesian total probability of error
criterion (with A=I) minimizes the weighted sum of omission
and commission errors with the prior probabilities. Equation (1)
will be called the "generalized" total classification error criterion.
The optimal acceptance probability can be obtained by checking
the elements in the set S defined as,

S ----{ ot I dE(or.__.......)))= 0 and d2E(ot--------2)> 0, 0 < ot < 1 }
dot dot 2

Each element in S will correspond to the (local) minima of

eq. (I). The global minimum can be selected by comparing the

actual values of E(ot) at different ot's in S in the following way.

Suppose oti, otj are elements in S, then, the difference in error
can be written as,

E(oti) - E(otj) - N (2)

where, Aij- EN(oti) - N(otj) - (or i - otj), (I+A) • NIl

By checking the signs of the Aij's, the acceptance probability
which attains global minimum can be selected from the set S.

Notice that evaluating eq. (2) requires _int, but, in the case of

the class-averaged classification error criterion, it can be
evaluated even without the prior probability since substituting A

= 7¢others//_in t results in a quantity independent of/_int- This
property of the class-averaged classification error criterion will
be very useful in actual application of this algorithm since the
prior probabilities are unknown in most problems.

IV. EXPERIMENTS AND DISCUSSION

To test the performance of the proposed estimating algorithm
, for optimal acceptance probability in significance testing and
=application to the pardaUy supervised classification, experiments
were carried out with both simulated and real data.

A. Exoeriment with Simulated Data

For a test with simulated data, 1000 samples were generated
for the class of interest to be bivariate Ganssian with zero mean
and an identity covariance matrix. For the class "others", 2000
samples were generated to be bivariate Gaussian with a mean

[d,0] T, d > 0, and an identity covariance matrix. With this set-

up, the exact amount of overlap between the two distributions
can be calculated. The term "overlap" is defined as the volume

which is shared by the two probability density functions [1]. By
varying d, data sets with different degrees of separability can be

simulated, d was increased from 0.i to 5 in steps of 0.1. Ifd =
0.I, there is 96.02% of overlap between the two distributions,
and in the ease of d=5, there is only 1.24% of overlap. To avoid
any random error due to the data generation process and its
effect on evaluating the experimental result, data sets were
generated 50 times with different seed numbers, and the
averaged result was used in comparison.

To make a comparison with the estimated values, optimal
acceptance probabilities were manually selected by changing
acceptance probability from 0.01 to 0.99 in steps of 0.01 and
choosing the best one based on the selected optimality criterion.
These manually selected were denoted by "scanned" values and

compared with the estimates obtained by the proposed
algorithm. The estimated acceptance probabilities with both the
class-averaged and the total classification error criteria are shown

in Fig. 1. When applying the total classification error criterion,
the true value of prior probabilities were used.
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Figure 1. Estimated optimal acceptance probability versus d, the
distance between two class means; Solid lines show
the manually selected acceptance probabilities. Dotted
lines show the estimated optimal acceptance

probabilities using the proposed method, h is the
Parzen window size.

The density estimate required for N(ot) was obtained by
employing a Gaussian Kernel-based Parzen density estimate

with data set augmented by positive reflection [7]. In Fig. 1, the
estimated values followed very closely those manually selected
especially when d was large. The optimal acceptance probability
based on the total classification error was observed to be near 0

when d was not large enough, since the total classification error
was an increasing function of acceptance probability for those
small d values. When d < 1.0 under the class-averaged
classification error criterion, some degree of difference was
observed between the estimated and the manually selected. Since
the curve of class-averaged classification error was nearly flat
when d < 1.0 [1], an exact location of the minimum of the class-

averaged classification error was hard to pinpoint and thus, there
was observed a relatively large standard deviation not only in the
estimated but also in the manually selected optimum values [1].
In spite of those discrepancies in estimated optimal values, there



wasnotmuchdifferencein theresultingclass-averaged Fig. 3. The estimated optimal acceptance probabilities using theclassification errors. Since less than 1% of the differences were
observed under both optimality criteria by varying the window proposed method agreed quite well with those manually selected
size, classification results are shown only for h--0.2 in Fi E. 2. [1]. The class-averaged classification errors with estimated

optimum acceptance probability were also very close to those
The significance testing deals with only the values of the test _,:; obtained with the manually selected values. The maximum

statistic, therefore there is a dimensionality reduction of feature difference between the estimated and the manually selected was
vectors to one-dimensional space of the selected test statistic,
and this causes information loss in classification. only 0.03, except for the sub-class 4 of "alfalfa/oats" which had

a difference of 0.08. The corresponding difference in the class-
"-, 50 ' : averaged classification error in this sub-class was only 0.34%.
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Figure 2. Classification error versus d, the distance between
two class means; (a). with class-averaged
classification error criterion (b). with total
classification error criterion; "REL-ML" and "REL,
MAP" are results with the relative maximum

likelihood and maximum a posterior classifier
respectively. ParT_n window size h was 0.2.

To see the effect of dimensionality reduction, a (relative)
maximum likelihood classifier (denoted as "REL-ML") and a
maximum a posterior classifier (denoted as "REL-MAP") were
designed in the original q-dimensional space with known class
statistics of Cint and Cothers. Their classification results were

also included in Fig. 2. Under both optimality conditions, the
estimated optimal acceptance probabilities resulted in almost the
same performances with manually selected values. There was a
maximum of about 12% error increase due to the dimensionality
reduction.

Figure 3. Comparisons of class-averaged classification error
with optimal acceptance probabilities estimated with
the class-averaged classification error criterion. "REL-
ML" is the result obtained with a (relative) maximum
likelihood classifier designed with all 12 sub-classes.

The class-averaged classification errors evaluated for each
information class are compared in Fig. 3. With all 12 sub-
classes and their etass statistics, a relative maximum likelihood

classifier in the original seven dimensional space was designed
and its result (denoted by "REL-ML") is also included in Fig. 3
to show the effect of dimensionality reduction. In the corn and
wheat classes, there seemed to be not much information loss due
to dimensionality reduction. However, there was as much as 3 -

5% of class-averaged classification error increase in soybeans
and alfalfa/oats.

V. CONCLUSIONS

In this paper, a problem of estimating optimal acceptance
probability in significance testing was addressed to be applied
for partially supervised classification. As the optimality criteria,

i both class-averaged classification error and generalized total
'classification error criteria were considered. If the class of

i interest doesn't need to be decomposed into sub-classes, the
!class-averaged classification error criterion can be applied even
•without the knowledge of prior probabilities. The automatic
_estimation procedure will make the popular significance testing
technique even more powerful in many fields of its application
including partially supervised classification problem.

REFERENCES

B. Ex_riment with Real Data

For a test with real data, a Landsat Thematic Mapper data set
which was acquired over an agricultural area in Tippecanoe
County, Indiana in July was used with all seven features (i.e.,
q=7). From the available ground truth data, four different
information classes - corn, soybeans, wheat and alfalfa/oats -

were identified. About 10% of the samples were randomly
selected from each information class to be served as training
samples. Based on clustering, two sub-classes were found for
corn and soybeans and four sub-classes were found for wheat
and alfalfa/oats.

The class-averaged elassificadon error criterion was applied
to the sub-classes of the selected information class. A Gaussian

kernel function was used in density estimation with the posidve
reflection. Various window sizes (h---0.1 ~ h=0.6 in steps of
0.1) were tried to observe virtually no differences. The results
reported here were obtained with h=0.5. In order to make a
comparison with the estimated optimal acceptance probability, a
specific value which attained the given optimality condition was
manually determined as before. It is denoted by "scanned," in

[1] B. Jeon and D. A. Landgrebe, "Design of Partially
Supervised Classifiers for Muldspectral Image Data,"
Technical Report, TR-EE 93-I I, School of Electrical
Engineering, Purdue University, 1993

[2] B. Jeon and D. A. l..andgrebe, "Absolute Classification with
Unsupervised Clustering," Prec. of IEEE Intern. Geos. and
Remote Sensing Symp., pp.1609-1611, 1992

[3] C. W. Therrien, et al., "Statistical Model-Based Algorithms
for Image Analysis," Prec. of IEEE, Vol.74, No.4, pp.532-
551, April, 1986

[4] K. Fukunaga, et al., "The Acquisition Probability for a
Minimum Distance One-class Classifier," Trans. lEEE Acre.

and Electronic Systems, AES-23, pp.493-499, 1987
[5] H. L. Van Trees, Detection. Estimation. and Modulation

Theory. Part L John Wiley & Sons, New York, 1968
[6] B. W. Sllverman, Density Estimation for Statistics and Data

Chapman and Hall, 1986
[7] L. I. Boneva, et aL, "Spline transformadons: three new

diagnostic aids for the statistical data-analysis (with
Discussions)," Journal Royal Statist. See. B, 33, pp.l-70,
1971




